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Timeline

Start date: FY16
End date: FY18
Percent complete: 50%

Budget
Total project funding: 100% DOE
FY16 Funding:
- Composite Electrodes: S500K
- Spinel Components: S500K

Overview
Barriers
= Low energy density
= Cost
= Abuse tolerance limitations

Partners
= Lead Pl: Michael Thackeray, Co-PI: Jason Croy

= Collaborators:

- CSE, Argonne: Eungje Lee, Joong Sun Park,
Arturo Gutierrez, Bryan Yonemoto, Meinan He
Roy Benedek, Fulya Dogan (NMR)

- APS, Argonne: Mali Balasubramanian (XAS)

- Northwestern University, NUANCE:
Vinayak Dravid, Jinsong Wu (TEM)

- PNNL: Chongmin Wang (TEM)
- ORNL: Harry Meyer (XPS)
- Industry: Argonne licensees and collaborators
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Objectives

m Design and characterize high capacity, high-power, safe and low
cost cathodes for PHEVs and EVs

" |Improve the structural design, composition and
electrochemical performance of Mn-rich cathodes to make
them competitive with Ni-rich cathode compositions, e.qg., 622

= Design and engineer stable electrode surfaces to improve
capacity and cycle life when charged to high potentials



Milestones (FY16)

Optimize the composition, capacity and cycling stability of structurally-
integrated ‘layered-layered’ and ‘layered-layered-spinel’ cathode
materials. Target capacity = 200 mAh/g for baseline electrode achieved.
Project on-going.

Scale up the most promising materials to batch sizes required for evaluation
by industry (10g-100g-1kg). Achieved. Project on-going.

Synthesize and determine the electrochemical properties of unique surface
architectures that enable >200 mAh/g at a >1C rate. Project on-going.

Synthesize and optimize spinel compositions and structures with a focus on
Co-based systems for use in structurally-integrated ‘layered-spinel’ systems.
Project on-going.



Approach

m Exploit the concept and optimize the performance of structurally-
integrated (‘composite’) electrode structures with a focus on
‘layered-layered-spinel’ materials.

m Design effective surface structures to protect the underlying metal
oxide particles from the electrolyte and to improve and maintain
their stability and rate capability when charged to high potentials
(4.5-4.6 V).



Motivation for R&D Approach

Major Materials Challenges for Li-ion Batteries

B Increase the energy density of cells — both volumetric and gravimetric for
portable/mobile applications

= |Increase cell voltage
= |ncrease electrode capacity = Mn rather than Co-, Ni-rich oxides
B Reduce cost and toxicity = Mn-rich rather than Co, Ni-rich cathodes

B Reduce/Eliminate Safety Hazard:

= [ithium Batteries Could Spark ‘Catastrophic’
Plane Fires, FAA Warns (2016)

= Control electrochemical and chemical
reactions to eliminate the risks of thermal runaway

—> Mn-rich rather than Co, Ni-rich oxide cathodes

= Non-flammable electrolytes

— Voltage control



Lithium- and Manganese-Rich Composite Electrodes
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Structure — integrated nanodomains yield complex structures

activation” leads to irreversible

structural changes, surface damage, voltage fade, and hysteresis

]
m Surface stabilization — electrochemica
m Hysteresis — energy inefficiency

]

— compromises battery management
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Stabilization of xLi,MnO,e(1-x)LiMO, Electrodes

B Extend concept of integrated structures to ‘layered-layered-spinel’ (LLS) systems

B Embed TM metal pillars (spinel component) to stabilize ‘layered-layered’ structures

Li,MnO; LiMO, LiM',0,
L e\ciele o Telelele e

© 0 o o o © 06 & o o

(111) planes

B Compatibility of cubic-close-packed
planes in layered Li,MnO; (001) and
spinel Li;M:;0,, (111) allows structural
integration of the two components

B Nano-composite structure

C. S. Johnson et al., Electrochem. Comm. 7, 528 (2005). A - I )



The Li,MnO,;-LiMO,-LiM’,0, System
Conceptual Design Space of ‘Layered-Layered-Spinel’ (LLS) Electrodes

B Wide Li-M-O compositional and LIMO,
phase space to exploit integrated (M=Mn_Ni, Co)
layered and spinel structures

B Use relatively small amounts of
Li,MnO; and LiM',0, spinel as
stabilizers

M Spinel domains created by reducing
the Li contentin ‘LL structures

B At what Li concentration do TMs
start migrating to the Li layer?
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M Highly complex structural

il

arrangements Li,MnO, ‘layered-spinel’ LiM’,0,
(layered) (M’=Mn, Ni, Co)
Park, Kang, et al., Electrochem. Comm. (2007); Kim, Kang et al., JES (2013) 9



\________________________________________
Reducing Li Content in Li,MnO; and LiMO,

B Li-deficient Li, ,MnOj transforms to spinel (Li,,,Mn,_0,) on heating (~850 °C)

Space group: C2/m
Layered structure (Mn**)
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B Delithiated Li, ,MO, structures, e.g., M=Ni,

V, Mn also transform on heating to spinel:
(X=.O) 1) M. Thomas, W. |. F. David, J. B. Goodenough, P. Groves,
"V Mater. Res. Bull., 20, 1137 (1985).
. 2) L. A. de Picciotto and M. M. Thackeray
LiMn,O : Fd- ’
DO soncesrowraam 2 20, 17195 (1965
(X_ '5) P 3) R.J. Gummow, D. C. Liles and M. M. Thackeray,

Mater. Res. Bull., 28, 1249 (1993). 10
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HRTEM of ‘Li,,MnO, ;" (x=1)

M Structure characterized by faulted
layered Li,MnO, regions, and
LiMn,O, spinel regions that exist
predominantly at the surface

B Distorted intergrown regions at the
interface — mismatch in lattice
parameters?

Faulted layered Distorted Spinel phase
structure intergrown
interface

J. Wu, Q. Li and V. Dravid, Northwestern University (2016)
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The Effect of Lithium Content in ‘Baseline’ NMC ~‘532’

‘0.25Li,.,MnO, 5¢0.75LiMn 555Nij 57,5C0, 550, i.e., Li, Mn, c3Nij 55C04 1405 (Mn:Ni ~
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B Maximum capacity at ~6% ‘targeted’ spinel content

B 1st-cycle efficiency increases with increasing spinel content

B Rate capability increases — spinel-stabilized surface?

B. Long et al., JES (2014); D. Kim et al., JES (2013)
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Capacity, mAh/g

Cycling Stability and Rate Performance (4.45-2V)
MERF Facility - Li,Mng <;Niy ,5C00 1505
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m Electrodes containing 5-10% spinel (targeted amount) show significantly
better capacity and rate capability relative to those with 2% and 15%

m Stable cycling
m Powders with targeted 6% spinel scaled to 800g production

Croy, Shin et al., J. Power Sources (2016) 13



Capacity (mAh/g)

Untreated and Surface-treated LL and LLS Electrodes
(derived from 0.25Li,Mn0O,¢0.75LiMn 555Ni 375C04 ,c0,; Mn:Ni ~2:1)
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= US Patent Application Filed

Cycling protocol in Li half cells:
(15 mA/g charge and discharge)

(a)
= One activation cycle: 4.60-2.0V
= Subsequent cycles: 4.45-25V
= 210-220 mAh/g

= One activation cycle: 4.60-2.0V
= Subsequent cycles: 4.60-2.5V
= 220-230 mAh/g
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(derived from 0.25Li,Mn0O;¢0.75LiMn 555Nig 375C04 ,c0,; Mn:Ni ~ 2:1)
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B Steady cycling after activation (voltage fade suppressed)

B ‘Approaching end-of-life’ indicator at ~3.5 V in LLS electrodes
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Untreated and Surface-treated LL and LLS Electrodes
(derived from 0.25Li,Mn0O,¢0.75LiMn 555Ni 375C04 ,c0,; Mn:Ni ~2:1)
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B Predominant Ni reduction peak at 3.7 V, less hysteresis than in
0.5Li,Mn0O;0.5LiMn, -Ni, :O, electrodes
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LLS Electrodes with Lithium-Cobalt-Nickel-Oxide Spinels?

Embedding a lithiated cobalt-rich spinel rather than a manganese-based
spinel as a stabilizer for high capacity xLi,MnO,¢(1-x)LiMO, electrodes seems
attractive:

B Lithiated spinels Li,[Co,_,,Ni,]O,, like xLi,MnO5¢(1-x)LiMO, materials have close-
packed structures with a rock salt stoichiometry, making them compositionally,
and potentially structurally, compatible with one another

B Relative to manganese and nickel, cobalt has a lower propensity to migrate in a
cubic-close-packed oxygen lattice, thereby offering the possibility of mitigating
voltage fade

B Lithium extraction from a lithiated cobalt-rich spinel component, Li, ,Co, , Ni, O,
(0<x<1), occurs at a significantly higher potential (~3.6 V) than a lithiated
manganese-oxide spinel analogue, Li, ,Mn,0, (~2.9 V)

R. J. Gummow, M. M. Thackeray et al, Solid State lonics, 53, 681 (1992); Rossen, E.; Reimers, J. N.; Dahn, Solid State lonics 62, 53-60 (1993)



N
The Layered-Spinel LiCoO, Structural Anomaly

. (003) (a) Layered LiCoO,
Layered-LiCoO, (R3m: ¢/a = 4.99)

(trigonal R3-m, ¢/a = 4.99)
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B The X-ray diffraction pattern of layered-LiCoO, with an ideal cubic-close-packed
oxygen array with R3-m symmetry (¢/a = 4.90) is identical to that of a lithiated spinel
structure, Li,[Co,]O, with Fd-3m symmetry!
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Rietveld Analyses of LT-LiCo, gNiy ;O, - synchrotron XRD data
Spinel (Fd-3m) and Layered (R-3m) symmetry

Goodness of fit = 1.93 LT-LiCo,Ni, 0,
S.G.

Fd-3m

Goodness of fit = 1.89 LT-LiCo,Ni, O,
S.G.R-3m

4 6 8 10 12 14 16 18 4 6 8 10 12 14 16 18 20 22 24
M ismhurivh WMo
" L " L 1 N | | " | " | 1 | " " 1 L 1 " | L 1 - " | " | " | " I. 1 | "
24 26 28 30 32 34 36 38 40 42 44 24 26 28 30 32 34 36 38 40 42 44
20 (degree, 1 = 0.458997 A) 20 (degree, 1 = 0.458997 A)

Space group Fd-3m Space group R-3m
Lattice constants (A)  a=8.007(4) Lattice constants (A) a=2.830(7), c=13.872(3), c/a=4.90
R,/ Rup/ Rexp (%) 6.85/9.28 /4.81 R,/ Rup/ Rexy (%) 6.83/9.11/4.81
Goodness-of-fit 1.93 Goodness-of-fit 1.89
Atom Site X y z Occ. Beg Atom Site X y z Occ. Beg
Lil 16¢ 0 0 0 0.97(6)" 0.38(6)* Lil 3a 0 0 0 0.98(3) 0.33(1)*
Li2 16d 0.5 0.5 0.5 0.02(4)"  ]0.38(6) Li2 3b 0 0 0.5 0.01(7)"  ]03301)*
Col 16d 0.5 0.5 0.5 0.97(6)" | 0.38(6)" Col 3b 0 0 0.5 0983)" 03301
Co2 16¢ 0 0 0 0.024)" | 0.38(6)° Co2 3a 0 0 0 001" [033(1)!
o) 32e 0.259(7) 0.259(7) [0259(7) |1 0.47(3) o 6¢ 0 0 0.240(3) 1 0.37(7)

TOccupancies of Li and Co were refined with a constraint that would satisfy the anti-site

exchange condition.
*Beq of Li and Co was constrained to have the same value.

TOccupancies of Li and Co were refined with a constraint that would satisfy the anti-site
exchange condition.
"Beq of Li and Co was constrained to have the same value.

M Lithiated spinel and layered structures are indistinguishable within experimental error

oy
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Synchrotron XRD patterns of LT-LiCo, Ni O, (x=0 & 0.1)

_____ LT'LiCOO.gNiO.»]OZ

Intensity (arbi. u)

B [T-LiCoO, (x=0, 400 °C) unequivocally contains lithiated spinel and layered components
(peak splitting/broadening)

B [T-LiCo,4Ni, 0, (x=0.1, 400 °C) contains predominantly lithiated spinel; slight peak
asymmetry suggests a small deviation from an ideal spinel distribution of cations

B Further analysis of LT-LiCoO, reported in ES235 (Characterization/modeling project - Croy)
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Electrochemical Profiles of Li/LT-LiCo, Ni,O, Cells
(Synthesis temperature: 400 °C)
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Electrochemical profile shows both
layered behavior (~3.9 V) and
lithiated spinel behavior (~3.5 V)

Spinel cycling more stable than
layered cycling = layered structure
is metastable, not ideally configured

10% Ni substitution promotes spinel
formation at 400 °C

dQ/dV plot clean = cubic spinel and
‘cubic-layered’ structures

Irreversible reaction at ~4 V on initial
charge = unstable layered component?

Efforts underway to integrate Co-based
spinels into layered NMC structures

= |nvention Report/US Patent Application Filed on Further Advances
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Future Work - FY2017/FY2018

m Good momentum has been gathered and progress made in advancing the
performance of Li- and Mn-rich ‘layered-layered-spinel’ (LLS) cathode
materials and stabilizing their surfaces through compositional control.

m High-potential (~3.5V), lithiated Co- and Ni-based spinels have been
evaluated as potential components for LLS electrode systems — this research
has provided an encouraging new direction for this sub-project (not yet
publicly disclosed).

m Forthe remainder of FY2017 and in FY2018, efforts will focus on optimizing
the capacity, rate and electrochemical stability of LLS electrode materials.

m Collaborative interactions with industry to evaluate ANL’s baseline LLS
electrodes and surface-treated materials have been initiated.

m Complementary studies, both experimental and theoretical, to characterize
bulk LLS and surface structures will be undertaken to gather information
about the reasons for their electrochemical behavior (ES235)

Note: Any proposed future work is subject to change based on funding levels
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Summary

Recent trends:

= Nickel-rich cathodes (NCA, 811, 622) are in vogue
= |ncreasing the upper voltage cutoff (~4.4 V)
= Safety concern (need non-flammable electrolytes)

Layered-spinel composite structures hold promise to enhance the
capacity and cycling stability of xLi,MnO;(1-x)LiMO, (NMC) electrodes
- Mn-rich (lower cost and toxicity)
- Stabilizing Li in the TM layers (Li,MnO,)
- Stabilizing TMs in the Li layers
- Protective surface layers
- Safer than Co-rich and Ni-rich electrodes
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